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Abstract: - Electroencephalogram (EEG) is one the most used tools for the diagnoses and analysis of epilepsy. 
The diagnosis of epilepsy diseases are still made by physicians manually. This process is time consuming and 
subjective. In this study, EEG signal is analyzed by Discrete Time Wavelet Transform and Reconstruction 
Phase Space. Both techniques are used together to extract EEG features that allows Naïve Bayes classifier to 
diagnose the epilepsy diseases and classify the corresponding EEG signals into “normal” or “abnormal” classes 
based on the extracted features. To assess the performance of the proposed system, we conducted a simulation 
experiment that involved 200 EEG signals from publicly available EEG dataset from University of Bonn. The 
proposed algorithm shows excellent accuracy compared with other techniques. 
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1 Introduction 

The electrical activity of active nerve cells 
in the brain produces currents spreading through the 
head. These currents reach the scalp surface, and the 
resulting voltage differences on the scalp can be 
recorded as the electroencephalogram (EEG). EEG 
reflect brain electrical activity. 

Epilepsy is the second most prevalent 
neurological disorder in humans after stroke. It is 
characterized by recurring seizures in which 
abnormal electrical activity in the brain causes 
altered perception or behavior. A seizure is a 
disturbance characterized by changes in neuronal 
electrochemical activity that results in abnormal 
synchronous discharges in a large cell population, 
giving rise to clinical symptoms and signs. Well-
known causes of epilepsy may include: genetic 
disorders, traumatic brain injury, metabolic 
disturbances, alcohol or drug abuse, brain tumor, 
stroke, infection, and cortical malformations. 

The EEG of epileptics will normally display 
isolated sharp transients or "spikes" in some 
locations of the brain. These spikes are a main 
source of information in the diagnosis and 
localization of epilepsy. Fig.  1 shows the EEG 

signal for normal case. Fig.2 shows epileptic 
EEG signal. 

 
Fig. 1.Normal EEG Signal 

 
Fig. 2. Epileptic EEG Signal 
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In this paper EEG signal is analyzed by 
optimized phase space and naïve byes classifier to 
detect the epilepsy. The proposed approach offers 
excellent detection technique.  

EEG signal classifiers play a particularly 
important role in EEG signal processing. Many 
recent studies have proposed new methods for 
classifying and detecting Epilepsy [1-12]. Still more 
research efforts are seriously needed for clinical 
implementation. The proposed methodology in this 
paper investigates a new epilepsy diagnosis method 
based on Discrete Wavelet Transform (DWT), 
Reconstruction Phase Space (RPS) and Naïve Bayes 
classification. 

The paper is organized as follows: in 
section 2 the methodology of the work is described. 
In Section 3 the proposed methodology is applied to 
real EEG signals some of them suffer from epileptic 
seizures. Finally, the paper is concluded in section 
4. 

 

2. METHODOLOGY 
Mathematical transformations are applied to 

signals to obtain hidden information from that signal 
that is not readily distinguishable in the raw signal. 
Looking at an EEG signal, the typical shape of a 
healthy EEG signal is well known to 
neurophysiologist. Any significant deviation from 
that shape is usually considered to be a symptom of 
a pathological condition. This pathological 
condition, however, may not always be quite 
obvious in the original time-domain signal. This 
makes frequency content useful. The basic 
architecture of the proposed method is shown in Fig 
3. 
 
 
 

       

Fig. 3. The Developed System Methodology 
 

Discrete wavelet transform DWT is used to 
decompose the EEG signal of each band of 
coefficients of normal and abnormal signals. DWT 
is taken of EEG signal for 3 levels using daubchies 
wavelet based function db4 that is the most common 
because of it is favorable characteristics, such as 
orthogonal and filters length that can be determined 
as the work needed. To determine the coefficients of 

each signal, wavelet coefficients ca1, ca2, and ca3 
with frequency ranges of 0-fs//2, 0-fs/4, 0-fs/8, 
respectively are selected. These ranges contain the 
frequencies of EEG rhythms alpha, beta, theta, and 
delta. After that the statistical classification and 
power spectral density are taken to make 
classification of EEG signals. The phase space is 
then reconstructed for all series wavelet coefficients. 
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The abnormal ca’s show wide range of scattering 
and deviation when compared with the phase space 
plots of normal ca’s. This observation is that it 
enables us to come up with a simple feature 
extraction method to distinguish normal from 
abnormal signals. The resulted features will be 
classified by Naïve Bayes classifier as normal or 
abnormal cases. Genetics algorithm will be used to 
optimize Phase Space unit in order to select the best 
window size and type used in feature selection. 

2.1. Discrete Time Wavelet Transform 
(DTWT) Unit 

Wavelet analysis represents a windowing 
technique with variable-sized regions. The wavelet 
transform can provide a time frequency description 
of signal. To make wavelet transformation, the time-
domain signal will be filtered out either by 
removing high frequency or low frequency portions 
of the signal. This procedure is repeated, every time 
some portion of the signal corresponding to some 
frequencies are removed from the signal. 

Given a signal EEG signal of length N, the 
DWT consists of log2N stages at most. Starting from 
EEG signal, the first step produces two sets of 
coefficients: approximation coefficients ca1, and 
detail coefficients cd1. These vectors are obtained 
by convolving EEG signal with the low-pass and the 
high-pass filters as shown in Fig. 4. The signal is 
passed through a series of high pass filters to 
analyze the high frequencies, and it is passed 
through a series of low pass filters to analyze the 
low frequencies [12].The next step splits the 
approximation coefficients ca1 in two parts using 
the same scheme replacing EEG signal by ca1 and 
producing Ca2 and Cd2, and so on. It can be seen 
that for level i+1 the input signal after low pass and 
high pass filtering the signal is down sampling by 2 
to produce Cai+1 at the output. For example the 
wavelet decomposition of the signal EEG signal 
analyzed at level i has Cai+1, cdi+1  

          

   

Fig. 4. Diagrams of DTWT EEG Signal 
Decomposition 

 

2.2. Reconstructed Phase Space (RPS) Unit 
The reconstructed phase space (RPS) 

technique has been used to study the nonlinear 
dynamical behavior of a variety of time series 
analysis. The reconstructed phase space is an 
example of higher dimension transformation of the 
time series, where the RPS is an n dimensional 
space in which a signal is plotted against time-delay 
versions of itself. Each point in such a phase space 
is calculated as follow:  

            
].....[ )1(nx nndn xxx ττ −−−=

, 
Ndn ).....)1(1( τ−+=   (1) 

   
Where N is the dimension of the time series, 

τ is the time delay, and d is the embedding 
dimension. Then the entire phase space is generated 
by: 
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 (2)                     

The trajectory matrix is formed by 
compiling its row vectors from the vectors that are 
created by equation 1. The resulted matrix is a 
mathematical representation of the reconstructed 
phase space.  

To reconstruct the phase space the time lag 
and the dimension should be determined, the 
determination of these parameter affects the 
classification method, so they can be determined to 
obtain the maximum accuracy of the classification. 
The time lag can be determined by using the first 
minimum of the auto-mutual information function 
method, the first zero crossing of the 
autocorrelation, or empirically such as to obtain 
maximum classification accuracy. The dimension 
can be selected using the false nearest neighbors, 
Cao’s method, or by an empirical method to obtain 
maximum accuracy. 

The choice of the lag time will affect the 
distribution of the attractor in the reconstructed 
phase space. For a nonlinear periodic time series, a 
first minimum of the auto-mutual information 
function can be used to determine the optimal time 
delay for embedding the signal in the phase space 
reconstruction. Mutual information function 
provides a measure for dependency within and 
between time series. In other words, when taking a 
sequence of time series measurements over a 
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specified period of time, the uncertainty in the 
prediction of the next measurement can be 
estimated.  

Let us consider two time series X and Y, the 

uncertainty ),( jiXY yxI which is called the mutual 

information about measurements ix  given jy  is 
expressed by: 

                                     








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 (3)                         

Where )( iX xP  is the probability of 

observing ix  in X time series, )( jY yP  is the 

probability of observing jy  in Y time series and 
),( jiXY yxP  is the joint probability of observing ix  

and jy  in the two time series. The average mutual 
information of the two time series is the mean of 
mutual information over all of the measurements in 
the two series, which is given by:  
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N
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  (4)                                 

Now, consider one time series X with 
period of T, and then the average mutual 
information of that series can be calculated as 
discussed above. Mathematically, the average auto-

mutual about a measurement τ+tx  given a 

measurement tx  at time t over all the time t is given 
by: 
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     (5) 
The mutual information function applied on 

a time series is similar to the autocorrelation 
function in which the degree of dependency is 
measured. Mutual information function measures 
the dependency even the time series is nonlinear or 
chaotic. The advantages of autocorrelation are that it 
can be calculated quickly and it does a good job of 
describing a linear system. The disadvantage is that 
the autocorrelation function always assumes that the 
underlying process is linear and calculates a value 
for dependency; if the underlying process is not 
linear, the value would be incorrect. 

  In the reconstructed phase space, each 
specific coefficient resulted from Discrete Time 
Wavelet Transform unit ca1, ca2 and ca3 has its 
geometrical distribution, so identification 
parameters can be chosen depending on the 
distribution of data within RPS. A simple feature 
extraction method has been used in this paper to 
extract the features from ca1, ca2 and ca3. The 
proposed method uses a box a centered at zero and 
spans a range between -100 to 100. This box 
measures the clustering of points around the center 
of the phase space of ca1, ca2 and ca3. The 
percentages of the number of points bounded by box 
(window) is calculated for all wavelet coefficients 
as: 

%100*
(.)
(.)(.)

TN
NP =

  (6) 
Where N (.)=Number of points in the 

selected area and NT(.)=Total number of points in 
the RPS. P(.) will be used as feature vector to 
distinguish normal from abnormal signals in Naïve 
Bayes Classifier. 

2.3. Genetic Algorithm (GA) Unit  
Genetic Algorithm (GA) is one of the most 

popular derivative free optimization techniques 
which is based on the principles of evolution and 
natural genetics [13].  

Genetic algorithms make multiple way 
search by creating a population of candidate 
solutions instead of just test one single solution. A 
starts by constructing a new population using 
genetic operation such as crossover and mutation 
through an iterative process until some convergence 
criteria are met.  
The resulted new population will be decoded back 
to its original format.  A new generation is created 
by repeating the selection, recombination and 
mutation processes until all chromosomes in the 
new population replace the initial population.  

The main step after creating a population of 
chromosomes is to calculate the fitness value of 
each member in the population. The fitness value fi 
of the ith weight parameter is the objective function 
evaluated at this weight set. The fitness function is 
chosen to be the root mean squared differences 
between the correct decision specified by physician 
T and the decision given by the Naïve Bayes 
Classifier 𝑇𝑇�. The Root Mean Squared Error (RMSE) 
is given by equation (7). Root Mean Square Error 
(RMSE) is the standard deviation of 
the residuals (prediction errors). Residuals are a 
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measure of how far from the actual class labeled by 
physician, 

𝑶𝑶𝒃𝒃𝒋𝒋𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝑭𝑭𝑭𝑭𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝑹𝑹𝑴𝑴𝑺𝑺𝑬𝑬 = �∑ (𝑻𝑻−𝑻𝑻�)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
   (7) 

Where n is number of records of training data  

By this definition, then, the lower the 
fitness, the better the developed model, and a fitness 
of zero means that the model achieves the desired 
behavior for all inputs. 

When we are sampling we should try 
different window. The size of the window should be 
a compromise between two requirements: 

• It is large enough to contain 
sensible information even though 
the signal is sampled and to retain 
the spectral properties of the 
original signal. 

• It is small enough to introduce 
generality in the data. To find any 
general properties in signal(s), we 
have to restrain to local 
neighborhoods. 

The most usual windowing method is the 
rectangular one, where a sample window of size m x 
m with top corner positioned at x0, y0 is obtained 
by multiplying the original phase space output 
function i(x,y) with window function  

 

                                                                          (8) 
In order to select a window dimension, 

different box sizes and types were chosen, then the 
accuracy of each box was calculated to get the 
optimal one using GA. 
2.4. Naïve Bayes Classifier Unit  

Naïve Bayes classifiers still tend to perform 
very well under this unrealistic assumption. Naïve 
Bayes is one of the most effective and efficient 
classification algorithms [14].  

The probability that a record with feather 
vector F={𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛} belongs to class Ci, Where 
𝐶𝐶𝑖𝑖 ∈ {𝐶𝐶1,𝐶𝐶1, … ,𝐶𝐶𝑘𝑘} 
 

𝑝𝑝(𝐶𝐶𝑖𝑖|𝑭𝑭) = 𝑝𝑝(𝐶𝐶𝑖𝑖|𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛) = 𝑝𝑝(𝐹𝐹1,𝐹𝐹2,…,𝐹𝐹𝑛𝑛 |𝐶𝐶𝑖𝑖).𝑃𝑃(𝐶𝐶𝑖𝑖)
𝑝𝑝(𝐹𝐹1,𝐹𝐹2,…,𝐹𝐹𝑛𝑛 )

              

               (9) 

 
• 𝑝𝑝(𝐶𝐶𝑖𝑖|𝑭𝑭) is the posterior probability 

of class (𝐶𝐶𝑖𝑖) given features (𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 ).  
• 𝑃𝑃(𝐶𝐶𝑖𝑖)is the prior probability of class (𝐶𝐶𝑖𝑖). 
• 𝑝𝑝(𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 |𝐶𝐶𝑖𝑖)is the likelihood which is 

the probability 
of features (𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 )  given class (𝐶𝐶𝑖𝑖)..  

• P(x) is the prior probability 
of features (𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 ). 
 

 Calculating 𝑝𝑝(𝐶𝐶𝑖𝑖|𝑭𝑭) is the main aim in 
Naïve Bayes Classifier. Specifically, we want to 
find the value of 𝐶𝐶𝑖𝑖  that 
maximize 𝑝𝑝(𝐶𝐶𝑖𝑖|𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛). Since 𝑝𝑝(𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛) 
is constant number for all k values, then equation 
(10) can simply say  
 
𝑝𝑝(𝐶𝐶𝑖𝑖|𝑭𝑭) = 𝑝𝑝(𝐶𝐶𝑖𝑖|𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛) ∝
( 𝑝𝑝(𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 |𝐶𝐶𝑖𝑖).𝑃𝑃(𝐶𝐶𝑖𝑖) ) (8) 
Where  

𝑃𝑃(𝐶𝐶𝑖𝑖) =
𝑁𝑁𝐶𝐶𝑖𝑖
𝑁𝑁𝑇𝑇

                                                  (10) 

• Nci is count of samples from class Ci. 
• NT is Count of all samples. 
 
Naive Bayes classifier assumes Conditional 

independence that the effect of the value of a feature 
(F) on a given class (C) is independent of the values 
of other predictors. Then the  𝑝𝑝(𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 |𝐶𝐶𝑖𝑖) can 
be written as  
𝑝𝑝(𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛 |𝐶𝐶𝑖𝑖) = ∏ 𝑝𝑝�𝐹𝐹𝑗𝑗 �𝐶𝐶𝑖𝑖�𝒏𝒏

𝒋𝒋=𝟏𝟏        (11) 
 

Finally the Naive Bayes calculate the 
posterior probability for each class. Choose value of 
Ci that maximizes P(Ci | F1, F2, …, Fn) is 
equivalent to choosing value of Ci that maximizes 
P(F1, F2, …, Fn|Ci) P(Ci) 
The class with the highest posterior probability is 
the predicted one. The estimated class 𝐶𝐶𝑖𝑖�  
Corresponding to F is 
 

𝑇𝑇ℎ𝑒𝑒 𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐶𝐶𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠 𝐶𝐶𝑖𝑖� =
max 𝑝𝑝(𝐶𝐶𝑖𝑖|𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑛𝑛) , 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾

𝑖𝑖
    (12) 
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3. EXPEREMENT AND RESULT  

3.1. Experiment  
The datasets used in this research are 

selected from the epilepsy center in Bonn, Germany 
by Ralph Andrzejak [15]. Five data sets containing 
quasi-stationary, artifact, e.g., due to muscle activity 
or eye movements, free EEG signals both in normal 
subjects and epileptic patients. In this current 
research, we only use two sets: A and E. Set A as 
“normal class” and set E as “epileptic class”. Each 
set contains 100 single channel EEG segments of 
23.6-sec duration. These segments were selected 
and cut out from continuous multichannel EEG 
recordings. Set A consisted of segments taken from 
surface EEG recordings that were obtained from 
five healthy volunteers using a standardized 
electrode placement. Volunteers were relaxed in an 
awake state with eyes open. Set E only contained 
seizure activity. All EEG signals were recorded with 
the same 128-channel amplifier system, using an 
average common reference (omitting electrodes 
containing pathological activity). After 12 bit 
analog-to-digital conversion, the data were written 
continuously onto the disk of a data acquisition 
computer system at a sampling rate of fs = 173.61 
Hz. In this paper, 200 normal and abnormal single 
channel EEG segments are selected.  

The discrete wavelet coefficients ca1, ca2, 
and ca3 will be calculated. Then the phase space of 
each band of coefficients is plotted for normal and 
abnormal signals. In order to reconstruct the phase 
space for time series signal, the lag time and the 
embedding dimension should be determined. The 
embedding dimension used in this technique is 
chosen empirically as 2. There are many ways to 
determine the time lag of the reconstructed phase 
space, one of these methods is the auto-mutual 
information approach. The optimal time delay is 
calculated using the first minimum of the auto-
mutual information for each time series signal. The 
phase space is reconstructed for all series wavelet 
coefficients using a time lag of 2 and an embedding 
dimension of 2. Fig. 5 and Fig.6 shown below are 
examples of normal and abnormal phase space for 
ca1, ca2, and ca3. As seen from the figures below in 
the normal signal the majority of points in ca3 are 
centered on zero without scattering with small 
amplitudes compared to the points of the same 
coefficients in abnormal signal. This distribution is 
based on the fact that the abnormal signal has been 
affected by epileptic seizures that caused spikes 
with high amplitudes and low frequencies.  

 
Fig.5. Phase Space Plot of Normal ca3 

 
Fig.6. Phase Space Plot of Abnormal ca3 

 
The results of only 40 cases out of 200 

cases are shown in table 1. The experiments were 
performed with input window size of (-100×100) 
because through this size we have achieved the best 
classification accuracy using Genetic algorithm. 
Table 2 show the relation between rectangular and 
circular window size and the overall accuracy 
achieved by Genetic Algorithm.  Fig.7 shows that 
the rectangular window of size 100x100 has the best 
accuracy compared with other windows types and 
sizes. 
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Table 1 Feature Extraction of 20 Cases (Normal and Abnormal). 
 Normal Cases                 Abnormal Epileptic Cases  

Case 
Num P (ca1) P (ca2) P (ca3)  Case 

Num P (ca1) P (ca2) P (ca3) 

1 219 105 41 21 11 3 2 
2 385 247 160 22 18 5 5 
3 371 240 187 23 3 0 1 
4 414 282 188 24 9 7 14 
5 402 296 212 25 12 3 2 
6 121 10 0 26 118 46 18 
7 407 252 196 27 46 37 22 
8 265 127 35 28 41 13 10 
9 421 273 206 29 6 1 0 

10 106 14 1 30 0 1 1 
11 493 421 365 31 124 61 40 
12 433 306 227 32 12 8 0 
13 465 350 262 33 81 38 23 
14 444 308 235 34 6 7 6 
15 296 167 82 35 12 3 1 
16 430 330 240 36 12 12 6 
17 262 111 31 37 16 6 2 
18 416 266 184 38 3 0 2 
19 423 337 302 39 257 137 69 
20 438 344 310 40 49 18 11 

  
 

Table 2 Correct Classification Rate for Different Rectangular Windowing Size 
Window size 

 
Correct classification 
rate (%) 

Circular 
Window size (radius)  

 

Correct classification 
rate (%) 

-100 to 100 97.54% 25 66.3% 
-50 to 50 81.46% 50 81.5% 
-75 to 75 83.23% 75 84.8% 
50 to 100 94.26% 100 93.4% 
-50 to 0 87.63% 125 94.7% 
-100 to -50 77.34% 150 94.8% 
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Fig.7. Accuracy of Different Rectangular and Circular Window Sizes 
 

In this study, WEKA (Waikato 
Environment for Knowledge Analysis) [16] is used 
to construct Naïve Bayes Classifier according from 
training set. Weka is a popular suite of machine 
learning software written in Java, developed at the 
University of Waikato, New Zealand. Weka is a free 
software tool available under the GNU General 
Public License. It contains a collection of 
visualization tools and algorithms for data analysis 
and predictive modelling that support data pre-
processing, clustering, classification, regression, 
visualization, and feature selection.  Weka has a 
powerful Graphical User Interface that supports its 
functionality.  

Once the features have been extracted and 
grouped into a feature vector, classification takes 
place, where each EEG signals are classified in one 
of the two classes: Normal or Abnormal. 

3.2. Analysis of the Results 

Fig. 8 Shows the Weka run information. To 
further validate the results, 10-fold cross validation 
was used. In 10-fold the training set will be 
randomly splitted into 10’s that have approximately 
the same size. Then the classifier will be trained 
using (8) subsets. One of the two remaining subsets 
will be used for validation and the last for testing.  

 
 
 
 

 
Fig.8. Naïve Bayed Run Information 
 

Fig. 9 shows the resulted Classification model 
evaluation results. The performance measurements 
used for this paper were precision, recall, F1 
measure and accuracy. The proposed model shows 
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high accuracy on epilepsy classification (up to 
100%) on the test data.  

We examined agreement between the results 
generated by the developed system and the one by 
the physicians. We constructed the confusion matrix 
for each class (present or not -present). The 
confusion matrix has the form shown in Fig.9, 
    

 
Fig.9. Epilepsy Classification Results 

 
Table 3 presents summary of EEG-based 

epilepsy diagnosis that used the same dataset (set A 
vs set E). The summary has been adapted by Al 
harabi et al in [11]. Our work achieved perfect 
classification performance compared with other 
methods as shown in Table 3. 

 

4. CONCLUSION 
In this paper we have extracted EEG features from 
the input EEG signals using both Discrete Time 
Wavelet Transform and Reconstruction Phase 
Space. We have shown that the develop 
methodology that uses Naïve Bayes can classify 
EEG signal as normal or abnormal (epileptic 
seizures) in the same level of accuracy as that of 
human evaluator.  

 

 
Table 3 Different EEG- Based Epilepsy Diagnosis 

 
Author Feature 

Extraction 
Classifier Accuracy 

(%) 
Niqam et al 

[17] 
Non-linear filter ANN 97.2 

Kannathal et 
al [18] 

Entropies ANFIS 92.2 

Subasi et al 
[19] 

DWT Mixture of 
experts 

94.5 

Srinivasan et 
al [20] 

Approximate 
entropy (Apen) 

Elman ANN 100 

Ocak [21] A pen on DWT ANN 96 
Dhiman et al 

[22] 
DWT, GA-SVM SVM  

Khalil Al 
Sharabi et al 

[11] 

DWT, Shannon 
entropy 

ANN 100 

This work DWT, 
Reconstruction 

phase Space 

Naïve Bayes 100 
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